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ABSTRACT

In this study we apply a genetic algorithm to a set of
RNA sequences to find common RNA secondary
structures. Our method is a three-step procedure. At
the first stage of the procedure for each sequence, a
genetic algorithm is used to optimize the structures
in a population to a certain degree of stability. In this
step, the free energy of a structure is the fitness criterion
for the algorithm. Next, for each structure, we define
a measure of structural conservation with respect to
those in other sequences. We use this measure in a
genetic algorithm to improve the structural similarity
among sequences for the structures in the population
of a sequence. Finally, we select those structures
satisfying certain conditions of structural stability
and similarity as predicted common structures for a
set of RNA sequences. We have obtained satisfactory
results from a set of tRNA, 5S rRNA, rev response
elements (RRE) of HIV-1 and RRE of HIV-2/SIV,
respectively.

INTRODUCTION

Three-dimensional folding of RNAs is necessary for their
in vivo functions. Consequently, the inference of secondary
structure is a crucial step in the understanding of a functional
RNA. Two main approaches are currently employed to predict
RNA secondary structure: comparative sequence analysis (1,2)
and thermodynamic optimization (3,4). The former method
examines homologous sequences to identify potential helices
which maintain complementarity in the sequences. In contrast,
the energy minimization method uses thermodynamics to
determine structures with minimum or near minimum free
energies. Coupled with the improvement in thermodynamic
parameters, the energy minimization method provides useful
structural information. However, it is generally agreed that the
use of phylogenetic comparisons is the most reliable for deter-
mining higher order RNA structure. But comparative methods
require that the alignment of the homologous sequences is
known in advance. In the RNA world, RNA structure is often
much more highly conserved than sequence, especially for
structured RNAs, during evolution. Under this circumstance,

an alignment based solely on sequence conservation is
generally inadequate. Thus, several algorithms for aligning
RNA sequences, taking into account the primary and
secondary information, have been developed (5–7). These
methods remain limited to sets of short sequences or require that
the structural information of one of the sequences is known.

Genetic algorithms (GAs) (8), like simulated annealing or
Gibbs sampling, is a stochastic optimization technique. Unlike
the traditional optimization methods, GAs operate on a population
of tentative solutions. Each solution has an encoded representation
equivalent to the genetic material of an individual in nature.
GAs solve the problems by randomly changing some solutions
(GA mutation) and recombining certain features of different
parental solutions (GA crossover). The next generation of
survival solutions is selected based on a predefined fitness
criterion. GAs iterate this procedure until no further improvement
can be achieved. This strategy mimics the processes of natural
genetic evolution. GAs do not guarantee to obtain the optimal
solution, but are known to perform well with combinatorial or
enumeration problems.

Several procedures using GAs for RNA secondary structure
prediction have been proposed (9–11). These methods deal
with a single RNA sequence and use free energy only as the
fitness criterion. However, the native structures are often not
optimal in the context of the current energy rules (12). In this study,
we explore the application of GAs, but in a set of homologous RNA
sequences, to the determination of RNA structures. To predict
a consensus secondary structure or structure motifs in a set of
RNA sequences normally requires knowledge of the alignment
of these sequences or the ability to align multiple sequences if
the alignment is unknown (5,13–15). Here, we propose a
method to predict a common RNA structure without knowing
or finding the alignment of the sequences. In our method, we
take into consideration not only the structural energy but also
the structural similarity among sequences. First, for each
sequence, we apply a GA to a population of randomly generated
structures with the free energy as the criterion until all the
structures in the population reach a certain level of stability.
Then, for each structure, we define a measure intended to
reflect the conservation of structural features among
sequences. With this measure as the fitness criterion in a GA,
we select the structures that satisfy certain conditions of stability
and structural conservation as possible common structures for the
set of sequences. The selected structures can be ranked
according to a score that is closely related to the defined
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measure of conservation. In each of the four test cases, we
were able to obtain a fairly convincing common structure from
the first 10 ranked ordered structures.

NOTATION AND TERMINOLOGY

Let C denote the collection of N homologous RNA sequences,
S1, S2, …, SN. Let Tp = {s1, s2, …, sn} be a structure in a
sequence Sp of length l(Sp) and Tq = { , , …, } be a struc-
ture in another sequence Sq of length l(Sq). We denote si = (ai, bi)
and = ( , ), where (ai, bi) is the closing base pair of a
stem si in Tp and ( , ) is the closing base pair of a stem
in Tq. We define the following terminologies.

Stem weight

We associate a weight for each stem in a structure. The weight
wi for a stem si is defined as wi = (2l + loop_size)/nb, where nb
is the total number of bases in structured regions, l is the stem
length of si and loop_size is the size of loop closed by stem si.

Stem equivalence

Without loss of generality, we assume that l(Sp) ≤ l(Sq). We
define stems si and to be equivalent if the following conditions
hold.
(1) Condition in the position of the stem. –δ1 < – ai < l(Sq)

– l(Sp) + δ1, where δ1 is a small non-negative integer.
(2) Condition in the size of region closed by the stem. –δ2 <

( – + 1) – (bi – ai + 1) < l(Sq) – l(Sp) + δ2, where δ2 is
a small non-negative integer.

(3) Condition in loop closed by the stem. si and sj both close
the same type of loop (hairpin, bulge, internal or multi-
branch loop). Moreover, the difference in loop size is
bounded by a pre-assigned value if the loop is a bulge or
internal loop. If the loop is a multi-branch loop, then we
require that the number of branches closed by si is no more
than that closed by .

(4) Condition in the relative position of a branch with respect
to the branch on the left and right. If si is a branch of a
multi-branch structure in Tp and is a branch of a multi-
branch structure in Tq, then we require that (a) –δ3 < ( – )
– (ai – bii) < l(Sq) – l(Sp) + δ3 and (b) –δ3 < ( – ) – (aiii – bi)
< l(Sq) – l(Sp) + δ3, where sii (or ) and siii (or ) are the
adjacent left and right branches of si (or ).

Structure conservation

To assess the conservation of structural features in a structure
Tp with respect to the collection C, we first define a measure
for the structural similarity between a structure Tp and a struc-
ture Tq in another sequence Sq as a weighted sum of equivalent
stems. More precisely, we define cons(Tp, Tq) = cons(si,
Tq), where cons(si, Tq) = wi if si has an equivalent stem ;
otherwise, cons(si, Tq) = 0. Secondly, we define the conserva-
tion of a structure Tp with respect to a sequence Sq as cons(Tp;
Sq) = max{cons(Tp, Tq)Tq ∈ ℘(Sq)}, where ℘(Sq) denotes
the current population in Sq. Finally, the conservation score,
cons(Tp), of a structure Tp with respect to the collection C is
defined as cons(Tp) = cons(Tp; Sq)/N.

Stem conservation

In our procedure, if a stem is less likely to have an equivalent
stem in other sequences, the stem is more likely to be replaced

during mutation. For the purpose of mutation, we define the
following: (a) the conservation score of a stem si with respect to a
sequence Sq, cons(si; Sq) = cons(si, T(Sq)), where T(Sq) is the struc-
ture in the current population of the sequence Sq such that cons(Tp,
T(Sq)) = max{cons(Tp, Tq)Tq ∈ ℘(Sq)}; (b) the stem conservation
with respect to the collection, cons(si) = cons(si; Sq).

Structural distance function

To avoid rapid convergence to a local optimal solution in a GA
iteration, the selection of the next generation in our procedure
is determined in part by the structural distance. We first define
the distance between structures Ti and Tj as dij = 1 – nij/mij,
where nij is the number of base pairs in common between the
two solutions and mij is the maximum number of base pairs of
the two structures (10). Then the distance function di of a structure
Ti is the sum of all its distance with all the solutions in the set
of structures we considered: di = �jdij.

ALGORITHM

The basic components of the algorithm are: (1) a population of
individuals, each of which represents a search point in the
space of potential solutions to a given optimization problem;
(2) a measure that provides the quality information (fitness) for
the individuals; (3) operations that are intended to model cross-
over, mutation and selection.

Individual representation

A secondary structure is an individual in the population. A
structure is encoded as a set of stems, such as T = {s1, s2, …, sn}.
One of the characteristics of GAs is that they work with
encoded representations of an individual, not the individual itself.
An advantage, for example, is that a better solution (individual)
can be obtained by assembling good features retrieved from
other solutions, including solutions with low fitness.

Fitness function

The quality of a solution is measured by a predefined fitness
(object) function. As in nature, the higher the fitness of a solution,
the better its chances of survival and reproduction in the subsequent
generation. Most functional RNAs appear to preserve a particular
base paired structure in evolution. The native structure, in
general, is not optimal thermodynamically, but, obviously, it
possesses a certain degree of stability. In the initial stage of the
procedure, the structures are optimized to some degree of
stability using free energy as the fitness criterion. At the
second stage, the conservation score, cons(T), is used as a
criterion of goodness to maximize the commonality of structural
features.

Initial generation

For each sequence, we randomly choose a stem si from the
master list of all possible stems that can be formed. Let (ai, bi)
denote the closing base pair and l be the stem length of si. For
this stem si we consider a list of stems that are interior to the
stem si. We say a stem s = (α, β) is interior to a stem si if (ai +
l – 1) < α < β < (bi – l + 1). From this list, we select stems that
are compatible with those already incorporated into the structure
in a stepwise fashion until no stem can be added. In this phase
of the construction, a stem is added to the structure if the addition
of a stem increases the stability of the structure; otherwise, the
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addition is determined by the Boltzmann rule. We repeat this
process until no more such stems si can be chosen from the
master list. In most cases, the structures obtained in this
manner are stable, i.e. have negative free energy. However,
some of the structures may be unstable. Therefore, after a
population of structures is generated, a GA is applied using the
free energy as the criterion of fitness until the average free
energy of the population is less than a predescribed value and
all the structures in the population are stable.

Crossover

The (genetic) crossover exchanges information among
solutions creating the possibility of the right combination of
motifs (genetic material) for better solutions (individuals). In
our procedure, a pair of structures is selected as two parental
structures from the population. The selection is based on the
fitness parameter. A structure with a higher fitness value has a
better chance of being selected, but it will not be paired with
itself. Several different types of crossover operators (one-point,
two-point or uniform crossover) can be implemented. In our
implementation, a stem pool is formed from the pair of struc-
tures. An offspring of the two parental structures is constructed
by stepwise selection of one stem after another from the stem
pool. At any step only stems compatible with the previously
selected ones are added. If two stems overlap and one is
selected, then the selected one is taken wholly and the other is
shortened. In the initial stage of the procedure, the selection is
carried out in a random fashion. In the stage of improving
structural conservation, the selection of stems is based on a
roulette wheel spin method with slots weighted in proportion
to the stem scores. The offspring is required to be different
from the two parental structures. If it is not after a certain
number of attempts, the structure with the higher fitness is
chosen as the offspring. For a population of n structures, n
pairs of structures are selected to be subjected to crossover.

Mutation

Mutation causes sporadic and random alterations in the genetic
material and plays the role of restoring lost genetic material. In
our procedure, every structure in the population is subjected to
mutation. The mutation is performed by the removal of some
stems from the structure and the subsequent addition of new
stems. In the initial stage, the stem which closes a region with
positive free energy will be removed from the structure. If no
such stem exists, the choice of stem to be removed is random.
In the second stage of the procedure, the removal of stems is
again based on a roulette wheel spin method with slots
weighted in inverse proportion to the stem conservation scores.
Thus, a stem with a smaller stem score is more likely to be
replaced. The addition of new stems is done in a completely
randomized manner. However, the new structure is required to
possess a certain stability, i.e. have a free energy less than a
predescribed value if possible.

Selection

Selection models nature’s survival-of-the-fittest mechanism. A
fitter individual has a higher number of offspring and thus has
a higher chance of surviving in the subsequent generation. In
our procedure, every structure in a population is mutated.
Meanwhile, exactly the same number of pairs as the size of a

population are selected for crossover. Thus, for a population of
n structures, 3n structures are produced in each GA iteration.
The size of a population is kept constant from generation to
generation. Selection of the first n best structures often results
in rapid convergence to a local favorable structure. To prevent
premature convergence, the next generation is selected based
on structural fitness and structural distance between solutions.
In our implementation, for each structure we define a score as
the difference between its fitness and the best fitness value in
the set considered divided by its distance function. The
structures are sorted in increasing order of this score and the
new population is selected from the top of the list.

IMPLEMENTATION

Our implementation of a GA in search of common RNA
secondary structures is a three-stage procedure. In the first
stage, the GA is used to obtain a population of structures that
satisfy certain stability conditions for each sequence in C. In
this case, the free energy of a structure is the measure of goodness
(fitness criterion). The procedure at this stage can be described
as follows.
(1) Generate, for each sequence, an initial population of n
structures by repeating the following steps.

(1.1) Form a list of stems that are compatible with those in
the existing structure. Initially, the list consists of all possible
stems for a given sequence.
(1.2) Randomly select a stem si from the list in 1.1.

(1.2.1) Create a list of stems that are interior to a stem si.
(1.2.2) Add stems to the structure until the stem list in
1.2.1 is exhausted. The Metropolis acceptance scheme is
used for the addition of a stem into the structure.

(1.3) Repeat steps 1.1 and 1.2 until the stem list in 1.1 is
exhausted. Then, a structure is generated and is encoded as a
set of stems.

(2) Iterate crossover, mutation and selection with free energy
as the fitness criterion until the stability criteria of the struc-
tures are reached. A more detailed description of a GA cycle is
given at the second stage of the procedure.

(2.1) GA crossover. The probability of a structure being
selected for crossover is proportional to its free energy. The
selection of stems for the offspring from two parental
structures is random.
(2.2) Mutation. The stems, if there are such stems, that close
the unstable region will be removed from the structure.
Otherwise, the removal of stems from the structure is
random.
(2.3) Selection. The selection of the next generation is based
on the structural stability and the diversity of the population.

In the second stage of the procedure, the GA is used to search
for those structures that satisfy the conditions of structural
stability and structural similarity. The structural similarity is
measured by the structural conservation score cons(T).
(3) Evaluate, for each sequence, the conservation score
cons(Tp) for each structure Tp in the current generation of a
sequence Sp as defined in the previous section. In the mean-
time, compute the stem score cons(si) for each stem si in struc-
ture Tp.
(4) Perform, for each sequence, genetic operations on the
current generation.
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(4.1) GA crossover. Select n pairs of structures using proba-
bilities that depend on cons(Tp) where n is the size of a popu-
lation. For each pair of structures:

(4.1.1) Create a list of stems from the two structures.
(4.1.2) Generate a new structure from these stems by step-
wise adding stems to the structure with probabilities
proportional to the stem scores until the stem list in 4.1.1 is
exhausted.

(4.2) Mutate every structure in the current population.
(4.2.1) Remove stems from a structure using probabilities
that are inversely proportional to the stem scores.
(4.2.2) Form a list of stems that are compatible with the
remaining stems in the structure.
(4.2.3) Add stems to the structure until the stem list in
4.2.2 is exhausted.

(5) Collect potential common structures for each sequence.
(5.1) Repeat step (3), but this time with a temporary popula-
tion of 3n structures obtained from a GA interation.
(5.2) Collect, from the 3n structures produced by a GA itera-
tion, the structures that satisfy the conditions cons(T) ≥ hc
and e(T) ≤ ec, where e(T) is the free energy of a structure T.
We consider each of them as a candidate for common struc-
tures.

(6) Select the next generation for each sequence.
(6.1) Form a set that consists of all distinct structures from
3n structures produced by a GA interation and count the
number of occurrences for each structure in the set. Denote
this set ℑ.
(6.2) Find the maximum conservation score, denoted
best_fit, of the structures in ℑ.
(6.3) Compute, for each structure Ti in ℑ, the distance
function di as defined previously and sc(i) = (best_fit –
cons(Ti))/di.
(6.4) Sort the structures in ℑ as the ascending order of sc(i).
(6.5) Select the structures from the top of the sorted list in 6.4
into the new population. Note that the occurrence count of a
structure is decreased by 1 if a structure is selected. After the
last structure in the sorted list is selected, the selection is
repeated from the top of the list until the next generation is
filled. A structure whose count is ≤0 is no longer available
for selection.

(7) Return to step (3) unless the maximum number of generations
has been reached.
Let denote the possible common structures generated
from step (5) for sequence Sp,p = 1, 2, …, N. We notice that in
the computation of cons(Tp; Sq), the structure that attains the
value cons(Tp; Sq) may not be one of the structures in . In
addition to the conditions of structural stability and similarity,
a predicted structure is also required that is conserved in most
of the sequences. Therefore, in the final stage of the procedure,
the common structures are obtained as follows.
(8) Iterate the following steps until they converge, i.e. =
for all p.

(8.1) Compute, for each structure Tp in , cons(Tp; ) =
max{cons(Tp, Tq)Tq ∈ } and then cons(Tp) =

cons(Tp; )/N for each set , 1 ≤ p ≤ N.
(8.2) Form a set, , of all the structures Tp satisfying the
conditions cons(Tp) ≥ hc, e(Tp) ≤ ec and nT(C) ≥ Nc, where
nT(C) is the number of sequences in C such that (Tp; ) ≥ hc
and the parameter Nc is a predefined integer.

Let Hp, 1 ≤ p ≤ N denote the common structures obtained from
step (8). To distinguish the common structures obtained from
the procedure, we rank structures based on their adjusted
conservation scores. In computing the adjusted conservation
score, a penalty is added to the score if the loop sizes closed by
two equivalent stems si and are not equal. More precisely, in
computing cons(Tp, Tq) where Tp is in Hp and Tq is in Hq, we
define cons(si, Tq) = wi if si has an equivalent stem and
loop_size(si) = loop_size( ), cons(si, Tq) = wi(1.0 – ζ –
ηloop_size(si) – loop_size( )) if loop_size(si) ≠
loop_size( ) and cons(si, Tq) = 0 if si has no equivalent stem in
Tq. Finally, in our procedure, a structure is eliminated from
consideration if there is a structure T such that: (1) is a
substructure of T; (2) is less stable than T; (3) has a lower
adjusted conservation score than that of T.

RESULTS

We applied our procedure to a set of 20 tRNA sequences, a
group of 25 5S rRNAs, a sample of seven rev response
elements (RREs) in HIV-1 and 10 RREs of HIV-2 and SIV. In
our procedure, for all the test cases, the maximum number of
generations was 100. The δ value in searching the equivalent
stem was set to 3. Also, two stems interrupted by an internal
loop of size two or by a bulge loop of size one were considered
as one continuous stem.

The sequences of the 20 tRNA ranged from 70 to 90 nt. From
the program MAL, Zuker’s multiple sequence alignment
program (16), the pairwise sequence similarities were between
0.30 and 0.66. A structure was considered as a potential
common structure if the structure conservation score computed
in step (5) of the procedure was at least 0.90. In addition to the
condition of structural similarity, the structure was also
required to be at least as stable as the average of the random
sequences which have the same base composition but in a
different order to the original sequence. The second condition
eliminates many of the less stable structures. Under these two
criteria, the cloverleaf secondary structures were obtained for
all the sequences except Salmonella typhimurium Pro-tRNA
(accession no. X63776), which is rich in GC. The cloverleaf
structure for Pro-tRNA is less stable than the random
sequences on average. If structures with a free energy no more
than the average random energy plus 0.5 SD were permissible,
the correct cloverleaf structure was one of the structures
obtained from step (8) of the procedure with a population of
100 structures for every sequence. In fact, the cloverleaf
structure for every sequence was one of the top five structures
in terms of the adjusted conservation scores. The accuracy of
our method in this case was determined by counting correctly
predicted known base pairs in the standard cloverleaf
structures. For these 20 tRNA, there were 432 base pairs in the
standard cloverleaf structures. Table 1 shows that the most
favorable structure correctly predicted 87.7% of known base
pairs on average, whereas the tenth predicted 81.2% on
average. Furthermore, one of the first 10 ranked ordered
structures contained 98.8% of known base pairs on average.
These top 10 structures together contained 99.8% of known
base pairs.

The lengths of the 25 5S rRNAs varied from 116 to 126 nt.
The pairwise sequence similarities ranged from 0.36 to 0.85. In
the procedure, the criterion hc for structural similarity was hc = 0.8,
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the stability criterion ec was ec = average random energy + 1 SD
and the population size was 100. Figure 1a displays a structural
alignment of 25 5S rRNA based on the structural information

obtained from the method. The structure of the first sequence
in the alignment was the most favorable in the sequence with
respect to the adjusted conservation score. The structure for

Table 1. Accuracy of a genetic algorithm for RNA common secondary structure prediction

Only the first 10 ranked ordered structures were considered in assessing the accuracy. The accuracy was determined
for: the structure ranked first (i.e. with highest adjusted conservation score); the structure ranked tenth; the single
best structure of the first 10 ranked ordered structures (column 6); the base pairs correctly predicted in at least one
structure (column 7). The accuracy was determined by counting correctly predicted base pairs. Standard deviations are
given with the percentages to demonstrate the range of accuracy. Only tRNA and 5S rRNA are listed since there
are no known standard structures in the RREs of HIV-1 and HIV-2.

RNA Nucleotides Base pair Correctly predicted base pair (%)

Rank 1 Rank 10 Best structure Any structure

tRNA 1556 432 87.7 ± 12.4 81.2 ± 12.5 98.8 ± 2.7 99.8

5S rRNA 3004 910 95.3 ± 7.0 87.9 ± 7.3 98.6 ± 4.3 98.7

Figure 1. (a) A structural alignment of 25 5S rRNA sequences (20) based on the structural information obtained from the method. Each structure in the alignment
was directly obtained from the method. The structure of the first sequence in the alignment is the most favorable with respect to the adjusted conservation score.
The structure for other sequences was selected from the best 10 structures of the sequence and most closely resembles the structure of the first sequence in the
alignment. (b) The most favorable secondary structure of E.coli 5S rRNA, which is the first sequence in (a). The multi-branch structure consists of two hairpins B
and C supported by helix A (stems A, B and C are labeled A-A′, B-B′ and C-C′). For each of 25 5S rRNAs, there is at least one structure in the first 10 ranked
ordered structures with the same structural feature as shown here.
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every other sequence in the alignment was selected from the
best 10 structures and most closely resembled the structure in
the first sequence. The selected structure may not have been
the most favorable in the sequence, however, the adjusted
conservation score was not significantly different. Figure 1b
depicts the most favorable structure of Escherichia coli 5S
rRNA, which is the first sequence in Figure 1a. By considering the
top 10 structures of E.coli 5S rRNA in terms of adjusted conser-
vation score, the structures differed only in local alternative base
pairing, not in branching. For example, some structures had stem
16–17/67–68 and some other structures had stem 13–14/67–68. In
every other sequence, there was at least one structure ranked in
the top 10 which had the same structural features or closely
resembled the structure shown in Figure 1b. Considering the
structures determined by comparative sequence analysis, there
were 910 base pairs in these 25 5S rRNAs. Table 1 shows that
the most favorable structure from our method correctly
predicted 95.3% of known base pairs on average, whereas the
tenth predicted 87.9% of known base pairs on average.
Furthermore, one of the top 10 structures contained 98.6% of
known base pairs on average.

From the alignment of 51 HIV-1 RRE regions presented in
Human Retroviruses and AIDS 1997 (17), more than 90% of
the nucleotides in the RRE region from the major group M
sequences are identical. However, in comparing a sequence
from group M and a sequence from outlier group O, we found
that less than 60% of the nucleotides in the RRE region are
identical. In this study, we selected five sequences from group
M and two sequences from group O. The pairwise sequence
similarities were between 0.567 and 0.948. All seven HIV-1
RRE had the same length, 234 nt. In the procedure, we set hc = 0.8,
ec = average random energy – 1.5 SD and the population size
was 200. A structural alignment of these seven HIV-1 RRE is
shown in Figure 2a. As in the case of 5S rRNA, the structure
for each sequence in the alignment was selected from the best
10 structures and most closely resembled the structure in the
first sequence. There was only one deletion and one insertion
needed in isolate ELI in the structural alignment among five
sequences from major group M. However, deletions and inser-
tions were required, especially in helix A, in order to align
structures between group M and group O. Figure 2b shows a
structure in a sequence SF2 from group M, while Figure 2c
shows the isolate MVP5180 from group O. Both are multi-
stem–loop structures supported by a long central stem A. The
multi-stem–loop regions from G39 to C104, the rev-binding
domain, were almost identical and agreed very well with the
published structures (18,19) of the binding domain. The difference
between the two structures was mainly in the long central stem
A; the locations, types and sizes of loop regions between the
two structures in this stem were mostly different. Based on our
scoring scheme, the adjusted conservation score of these two
structures was around 0.75. The major difference between the
structures in Figure 2b and the published structures is the extra
small hairpin from G128 to C138 in Figure 2b. This small
hairpin can be formed in all 51 sequences. The published struc-
tures of HIV-1 RRE also appear in our prediction, but these
structures were not ranked in the first 10 structures.

The alignment results of 26 nucleotide sequences from
Human Retroviruses and AIDS 1997 (17) indicate that the
RRE regions from HIV-2 and SIV are mostly conserved. In
this study, we selected eight sequences from HIV-2 and two

sequences from SIV. All the sequences had the same length,
216 nt. The pairwise sequence similarities ranged from 0.805
to 0.943. Since the RRE regions are mostly identical, in our
procedure the parameter hc for structural similarity was set to
hc = 0.9. For the other parameters, ec was set to be the average
random energy – 1.5 SD and the population size was set to 200.
Figure 3a shows a structural alignment of RRE in these 10
sequences. The selection and the properties of the structures in
the alignment were the same as those in the previous two cases.
Figure 3b is the overall most favorable structure (isolate ROD)
of the HIV-2 RRE from our procedure. The multi-stem–loop
structure from G117 to C188 can be formed and conserved in
all 26 sequences. The same conclusion can be made for the
stems from A23 to U194, C31 to G98, U37 to A67 and G68 to
U91. For every other stem, only a few sequences formed a
slightly different stem. Therefore, the structure in Figure 3b
may be a good representation of the consensus structure in the
RRE region of HIV-2 and SIV. The structure presented in
Figure 3b agrees very well with the published structure (20). It
is worth noting that the structures in Figures 2 and 3 are, in
general, very similar except for the small hairpin in Figure 2.

The number of RNA secondary structures grows expo-
nentially with the length of the sequence. The criteria for
structural similarity and structural stability can be used to limit
the number of structures for consideration. The criterion for
structural similarity should preferably be as large as possible,
and that for structural stability as negative as possible.
However, the stability of the structures and/or the structural
features in one sequence may be very different from those in
other sequences. For instance, in the case of 5S rRNA, the
structures of Bacillus brevis 5S rRNA from the procedure were
at least 0.5 SD less stable than those in the random sequences.
However, the structures of Sulfolobus acidoc 5S rRNA can be
3 SD more stable than those in random sequences. The total
number of structures produced from the procedure for B.brevis
and S.acidoc 5S rRNA were 64 and 2386, respectively. It is
difficult to know in advance what optimal values to use for
these two criteria. It is also likely that most of the structural
features and/or the characteristics of structural stability are
shared by the majority of sequences. In order to accommodate
those few exceptional sequences, we have to use relatively
loose conditions for one or both criteria. Under these circumstances,
it is possible that a large number of structures will be collected
in step 5 of the procedure for many sequences. This imposes a
heavy computational burden in step 8 of the procedure. The
following approach can probably ease the computation cost.
First, we use relatively restricted criteria in the GA. We are
likely able to obtain common structures satisfying both criteria
in most sequences. Then, for each of the remaining sequences,
we search for structures via a GA with less restricted criteria of
structural similarity and stability. The conservation score for
each structure in the remaining sequences is computed with
respect to those already predicted in most of the sequences.

The GA in this study is mainly used to search structural
space for the structures that satisfy predefined conditions of
structural similarity and stability. In order to explore the
immense structural space as much as possible, in each cycle of
a GA both the crossover probability and mutation probability
are set to 1.0. If the number of distinct structures selected in
step (6) is less than a certain percentage of the population size,
the procedure returns to stage (1). In order to compute the
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conservation score of a structure in steps (3), (5) and (8), it is
necessary to compare each distinct structure in a (temporary)
population (or ) of a sequence with those in other
sequences. The structure comparison takes O(n2) time, where n
denotes the maximum number of stems among all the structures
that were considered. For a set of N sequences, our method

requires O(n2m2N2) computation time, where m denotes the
maximum number of structures among N sequences. Therefore,
this method may take considerably more time than methods
based on dynamic programming algorithms, such as the sub-
optimal folding algorithm of Zuker (4). For example, the four
test cases in this study took 7100, 34 185, 108 360 and 144 980

Figure 2. (Opposite and above) (a) A structural alignment for seven HIV-1
RRE sequences based on the structural information obtained from the method.
Each structure in the alignment was directly obtained from the method. The
structure of the first sequence in the alignment is the most favorable with
respect to the adjusted conservation score. The structure for other sequences
was selected from the best 10 structures of the sequence and most closely
resembles the structure of the first sequence in the alignment. Deletions and
insertions are needed to align structures between major group M and outlier
group O. (b and c) A predicted common secondary structure of the HIV-1 RRE
region for (b) SF2, an isolate from major group M, and (c) MVP5180, an iso-
late from outlier group O. The two structures are similar to each other even
though the two sequences share less than 60% of nucleotides in the RRE
region. The seven HIV-1 RRE sequences (accession nos are given in parentheses)
used in this study were: HIVSF2 (K02007), HIVHXB2 (K03455), HIVMAL
(K03456), HIVELI (K03454), HIVU455 (M62320), HIVMVP5180 (L20571)
and HIVANT70 (L20587).

Hp
(i)
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CPU seconds, respectively, on an Alpha 8400/625 computer.
The suboptimal folding algorithm coupled with improved
energy rules (12) has led to an impressive improvement in
RNA secondary structure prediction. Especially, it gives
reliable predictions in well-determined structural domains
(21). Since our method is capable of obtaining fairly
convincing common structures from the first few ranked
ordered structures, our method might be an attractive alternative
in a poorly determined structural domain or in a molecule with
very few well-determined domains.

The algorithm described in this study has been implemented
in Fortran 77 on a Silicon Graphics Onyx computer and on an
SGI Apollo with IRIX 6.5. It has also been executed on a
Compaq/DEC Alpha 8400/625 EV56 with Digital Unix. The
source code is available via anonymous ftp as /pub/users/chen/
rnaga.tar.Z at ftp://ftp.ncifcrf.gov.
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